Parallelizing a novel new image resizing algorithm

Jacob Stultz
Motivation

- Automated image resizing
 - Websites, other resizable Uis

- How to prevent:
 - Loss of important image information
 - Distortion
Existing Methods

- Cropping
 - Maintains aspect ratio
 - Must find image focus
 - Not always feasible
Existing Methods

- Image Scaling
 - Simple
 - Potential distortion
 - Only decent for scale factor of 0.5 to 2
New Approach

- Determine importance of image components
 - Remove least important columns/rows
 - Remove least important pixels per column/row

- Both methods are subject to distortion
- Pixel importance may vary within columns/rows
Better Approach

- **Seam Carving**
- Find and remove the least important seams, or paths across the image
- Compromise between previous two methods
Seam Carving
Seam Carving

How to determine pixel importance?

- “Energy” function
 \[E(x,y) = |\frac{d}{dx}(x,y)| + |\frac{d}{dy}(x,y)| \]

- Other functions possible

- Find lowest energy path
Seam Carving Algorithm

- Calculate pixel energies
- Minimum path starting from each column or row
 - Dynamic Programming:
 - \(M(x, y) = E(x, y) + \min[M(x-1, y-1), M(x, y-1), M(x+1, y-1)] \)
- Remove lowest energy seam
- Repeat
Seam Carving Algorithm
Seam Carving Algorithm
Seam Carving Algorithm
Seam Carving Algorithm
Parallelization Opportunities

- Energy and Minpath:
 - Most computation/data intensive

- Energy:
 - Trivially parallelizable
 - Only fully executed once

- Minpath:
 - Somewhat harder to parallelize
 - Repeated many times
Parallelized Minpath
Parallelized Minpath
Parallelized Minpath
Parallelized Minpath
Parallelized Minpath
Parallelized Minpath, Take 2
Algorithm Analysis

- Energy Calculation
 - Serial time: $O(\text{width} \times \text{height})$
 - Parallel:
 - Time: $O(\text{width} \times \text{height} / P)$ (P = number of processors)
 - Communication: $O(\text{height} \times P)$ (Initially)
MinPath Calculation
- Serial time: $O(width \times height)$
- Parallel:
 - Time: $O(width \times height / P)$ (P = number of processors)
 - Communication: $O(height \times P)$ (Synchronized)
Energy

![Graph showing energy consumption for different image sizes in serial and parallel modes.](image-url)
Minpath

![Bar graph showing the time in ms for different image sizes (0.6 MP, 2.5 MP, 10 MP, 40 MP) for serial and parallel processing. The graph compares the time taken for serial and parallel processing across different image sizes.]
Conclusions

- Easily parallelized
- Communication limited smaller image sizes
- Effectiveness of algorithm varies widely
Future Work

- Test with more processors
- Photoshop / The GIMP Integration

- More features to parallelize:
 - Feature removal
 - Multi-size images